Particle swarm optimization using dimension selection methods

نویسندگان

  • Xin Jin
  • Yongquan Liang
  • Dongping Tian
  • Fuzhen Zhuang
چکیده

Particle swarm optimization (PSO) has undergone many changes since its introduction in 1995. Being a stochastic algorithm, PSO and its randomness present formidable challenge for the theoretical analysis of it, and few of the existing PSO improvements have make an effort to eliminate the random coefficients in the PSO updating formula. This paper analyzes the importance of the randomness in the PSO, and then gives a PSO variant without randomness to show that traditional PSO cannot work without randomness. Based on our analysis of the randomness, another way of using randomness is proposed in PSO with random dimension selection (PSORDS) algorithm, which utilizes random dimension selection instead of stochastic coefficients. Finally, deterministic methods to do the dimension selection are proposed, and the resultant PSO with distance based dimension selection (PSODDS) algorithm is greatly superior to the traditional PSO and PSO with heuristic dimension selection (PSOHDS) algorithm is comparable to traditional PSO algorithm. In addition, using our dimension selection method to a newly proposed modified particle swarm optimization (MPSO) algorithm also gets improved results. The experiment results demonstrate that our analysis about the randomness is correct and the usage of deterministic dimension selection method is very helpful. 2012 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Task Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids

In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...

متن کامل

Task Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids

In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...

متن کامل

Comparison of particle swarm optimization and tabu search algorithms for portfolio selection problem

Using Metaheuristics models and Evolutionary Algorithms for solving portfolio problem has been considered in recent years.In this study, by using particles swarm optimization and tabu search algorithms we  optimized two-sided risk measures . A standard exact penalty function transforms the considered portfolio selection problem into an equivalent unconstrained minimization problem. And in final...

متن کامل

A Hybrid Particle Swarm Optimization Algorithm for Service Selection Problem in the Cloud

With the growing number of alternative services in the cloud environment, users have put forward new requirements to solve the service dynamic selection problem quickly and efficiently. In this paper, an evaluation model of service process which considers concurrent requests and service association is proposed. This model evaluates the service process from three dimensions which are functional ...

متن کامل

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2013